回帖
数码吧
主题帖
知识图谱改变银行业务模式?基于GraphDB探索FIBO
收藏

译者:AI研习社(季一帆)

本体或知识图谱可不是随拿随用的,使用者需要做出相应的努力才能发挥其作用,使其成为有效可用的工具。我们知道,领域知识的用处极大,然而这些知识却总是不完备的,将领域知识表示为图中的数据可不容易。在这个过程中,关键在于将你掌握的领域知识完美匹配到图中的知识表示。在本文中,我们将就GraphDB特性进行一系列讨论,其中就包括上述的知识匹配/对齐。

金融业业务本体(FIBO)是由企业数据管理委员会(EDMC)开发的金融行业概念模型,至今仍由EDMC支持着FIBO的维护和开发。FIBO的目标是在金融业务数据构件的描述中,提供独立于数据构件的精确含义。具体而言,FIBO包含构建、扩展及集成金融业务应用所需的实体和关联信息。由于FIBO基于RDF(S)和OWL,因此可以使用SPARQL和OWL推理进行分析。本文应用的版本(2020第2季度)包含以下内容:

122个命名空间,表示模块结构; 1542类别 1328概念 535断言

自2017年首次发布FIBO以来,受益于金融业的广泛参与,该标准已取得广大发展,并符合许多现有标准。从一个称为“语义知识库”的Excel工作簿开始,FIBO已经发展成为基于RDF和OWL的复杂本体。在这个过程中,还发展了其他一些意外成果,包括本体工程的实践指南,例如使用传统基于文本的版本控制系统的RDF文本稳定性,通过与对象管理组(OMG)的密切关系实现严格的元数据标准,以及对OWL推理能力的使用。更多细节可见此处。

FIBO的内容多种多样,其中,RDF和OWL本体是包含业务知识的核心实体。这些业务知识可表示为RDF-XML、Turtle、JSON-LD和N-Quads/N-Triples等形式。此外:

在本文中,我们重点关注FIBO本体和词汇表。由于它们都使用RDF编码,因此可使用SPARQL和OWL推理进行分析。